Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Virol ; 97(12): e0187022, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37991365

RESUMO

IMPORTANCE: Twenty-five years after the first report that HIV-2 infection can reduce HIV-1-associated pathogenesis in dual-infected patients, the mechanisms are still not well understood. We explored these mechanisms in cell culture and showed first that these viruses can co-infect individual cells. Under specific conditions, HIV-2 inhibits HIV-1 through two distinct mechanisms, a broad-spectrum interferon response and an HIV-1-specific inhibition conferred by the HIV-2 TAR. The former could play a prominent role in dually infected individuals, whereas the latter targets HIV-1 promoter activity through competition for HIV-1 Tat binding when the same target cell is dually infected. That mechanism suppresses HIV-1 transcription by stalling RNA polymerase II complexes at the promoter through a minimal inhibitory region within the HIV-2 TAR. This work delineates the sequence of appearance and the modus operandi of each mechanism.


Assuntos
Coinfecção , Regulação Viral da Expressão Gênica , Repetição Terminal Longa de HIV , HIV-1 , HIV-2 , Interferons , RNA Viral , Produtos do Gene tat do Vírus da Imunodeficiência Humana , Humanos , Coinfecção/imunologia , Coinfecção/virologia , Repetição Terminal Longa de HIV/genética , HIV-1/genética , HIV-1/imunologia , HIV-2/genética , HIV-2/imunologia , HIV-2/metabolismo , RNA Viral/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Interferons/imunologia , Regiões Promotoras Genéticas/genética , Ligação Competitiva , RNA Polimerase II/metabolismo , Transcrição Gênica
2.
FASEB J ; 37(11): e23220, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37801035

RESUMO

Patients with cystic fibrosis (CF) exhibit pronounced respiratory damage and were initially considered among those at highest risk for serious harm from SARS-CoV-2 infection. Numerous clinical studies have subsequently reported that individuals with CF in North America and Europe-while susceptible to severe COVID-19-are often spared from the highest levels of virus-associated mortality. To understand features that might influence COVID-19 among patients with cystic fibrosis, we studied relationships between SARS-CoV-2 and the gene responsible for CF (i.e., the cystic fibrosis transmembrane conductance regulator, CFTR). In contrast to previous reports, we found no association between CFTR carrier status (mutation heterozygosity) and more severe COVID-19 clinical outcomes. We did observe an unexpected trend toward higher mortality among control individuals compared with silent carriers of the common F508del CFTR variant-a finding that will require further study. We next performed experiments to test the influence of homozygous CFTR deficiency on viral propagation and showed that SARS-CoV-2 production in primary airway cells was not altered by the absence of functional CFTR using two independent protocols. On the contrary, experiments performed in vitro strongly indicated that virus proliferation depended on features of the mucosal fluid layer known to be disrupted by absent CFTR in patients with CF, including both low pH and increased viscosity. These results point to the acidic, viscous, and mucus-obstructed airways in patients with cystic fibrosis as unfavorable for the establishment of coronaviral infection. Our findings provide new and important information concerning relationships between the CF clinical phenotype and severity of COVID-19.


Assuntos
COVID-19 , Fibrose Cística , Humanos , Fibrose Cística/complicações , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Mutação , Gravidade do Paciente , SARS-CoV-2
3.
J Clin Microbiol ; 59(8): e0040021, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-33980647

RESUMO

Dengue viruses (DENV) and Zika virus (ZIKV) are related mosquito-borne flaviviruses with similar disease manifestations, vector ecologies, and geographic ranges. The ability to differentiate these viruses serologically is vital due to the teratogenic nature of ZIKV and the potential confounding of preexisting cross-reactive anti-DENV antibodies. Here, we illustrate the kinetics of the IgM neutralizing antibody (NAb) response using longitudinal samples ranging from acute ZIKV infection to late convalescence from individuals with evidence of prior DENV infection. By serially depleting antibody isotypes prior to the neutralization assay, we determined that IgM contributes predominantly to ZIKV neutralization and is less cross-reactive than the IgG NAb. The IgM NAb peaked around 14 days (95% confidence interval [95% CI], 13 to 15) and had a median duration of 257 days (95% CI, 133 to 427). These results demonstrate the persistence of IgM NAb after ZIKV infection and imply its potential role in diagnosis, vaccine evaluation, serosurveillance, and research on flavivirus-host interactions.


Assuntos
Vírus da Dengue , Dengue , Infecção por Zika virus , Zika virus , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Reações Cruzadas , Dengue/diagnóstico , Humanos , Imunoglobulina M , Infecção por Zika virus/diagnóstico
4.
J Biol Chem ; 289(35): 24533-48, 2014 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-24970894

RESUMO

4'-Ethynyl-2-fluoro-2'-deoxyadenosine (EFdA) is a nucleoside analog that, unlike approved anti-human immunodeficiency virus type 1 (HIV-1) nucleoside reverse transcriptase inhibitors, has a 3'-OH and exhibits remarkable potency against wild-type and drug-resistant HIVs. EFdA triphosphate (EFdA-TP) is unique among nucleoside reverse transcriptase inhibitors because it inhibits HIV-1 reverse transcriptase (RT) with multiple mechanisms. (a) EFdA-TP can block RT as a translocation-defective RT inhibitor that dramatically slows DNA synthesis, acting as a de facto immediate chain terminator. Although non-translocated EFdA-MP-terminated primers can be unblocked, they can be efficiently converted back to the EFdA-MP-terminated form. (b) EFdA-TP can function as a delayed chain terminator, allowing incorporation of an additional dNTP before blocking DNA synthesis. In such cases, EFdA-MP-terminated primers are protected from excision. (c) EFdA-MP can be efficiently misincorporated by RT, leading to mismatched primers that are extremely hard to extend and are also protected from excision. The context of template sequence defines the relative contribution of each mechanism and affects the affinity of EFdA-MP for potential incorporation sites, explaining in part the lack of antagonism between EFdA and tenofovir. Changes in the type of nucleotide before EFdA-MP incorporation can alter its mechanism of inhibition from delayed chain terminator to immediate chain terminator. The versatility of EFdA in inhibiting HIV replication by multiple mechanisms may explain why resistance to EFdA is more difficult to emerge.


Assuntos
Desoxiadenosinas/farmacologia , Transcriptase Reversa do HIV/antagonistas & inibidores , Inibidores da Transcriptase Reversa/farmacologia , Sequência de Bases , Domínio Catalítico , Linhagem Celular , Primers do DNA , Transcriptase Reversa do HIV/metabolismo , Cinética , Ressonância de Plasmônio de Superfície
5.
Antimicrob Agents Chemother ; 58(8): 4915-9, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24867973

RESUMO

Sterile alpha motif- and histidine/aspartic acid domain-containing protein 1 (SAMHD1) limits HIV-1 replication by hydrolyzing deoxynucleoside triphosphates (dNTPs) necessary for reverse transcription. Nucleoside reverse transcriptase inhibitors (NRTIs) are components of anti-HIV therapies. We report here that SAMHD1 cleaves NRTI triphosphates (TPs) at significantly lower rates than dNTPs and that SAMHD1 depletion from monocytic cells affects the susceptibility of HIV-1 infections to NRTIs in complex ways that depend not only on the relative changes in dNTP and NRTI-TP concentrations but also on the NRTI activation pathways.


Assuntos
Didesoxinucleotídeos/metabolismo , Transcriptase Reversa do HIV/antagonistas & inibidores , HIV-1/efeitos dos fármacos , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Inibidores da Transcriptase Reversa/farmacologia , Adenina/análogos & derivados , Adenina/farmacologia , Linhagem Celular , Expressão Gênica , Genes Reporter , Transcriptase Reversa do HIV/genética , Transcriptase Reversa do HIV/metabolismo , HIV-1/enzimologia , Interações Hospedeiro-Patógeno , Humanos , Lamivudina/farmacologia , Luciferases/genética , Luciferases/metabolismo , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Monócitos/virologia , Proteínas Monoméricas de Ligação ao GTP/antagonistas & inibidores , Proteínas Monoméricas de Ligação ao GTP/genética , Organofosfonatos/farmacologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteína 1 com Domínio SAM e Domínio HD , Estavudina/farmacologia , Tenofovir , Replicação Viral/efeitos dos fármacos , Zidovudina/farmacologia
6.
Retrovirology ; 10: 65, 2013 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-23800377

RESUMO

BACKGROUND: The K65R substitution in human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) is the major resistance mutation selected in patients treated with first-line antiretroviral tenofovir disoproxil fumarate (TDF). 4'-ethynyl-2-fluoro-2'-deoxyadenosine (EFdA), is the most potent nucleoside analog RT inhibitor (NRTI) that unlike all approved NRTIs retains a 3'-hydroxyl group and has remarkable potency against wild-type (WT) and drug-resistant HIVs. EFdA acts primarily as a chain terminator by blocking translocation following its incorporation into the nascent DNA chain. EFdA is in preclinical development and its effect on clinically relevant drug resistant HIV strains is critically important for the design of optimal regimens prior to initiation of clinical trials. RESULTS: Here we report that the K65R RT mutation causes hypersusceptibility to EFdA. Specifically, in single replication cycle experiments we found that EFdA blocks WT HIV ten times more efficiently than TDF. Under the same conditions K65R HIV was inhibited over 70 times more efficiently by EFdA than TDF. We determined the molecular mechanism of this hypersensitivity using enzymatic studies with WT and K65R RT. This substitution causes minor changes in the efficiency of EFdA incorporation with respect to the natural dATP substrate and also in the efficiency of RT translocation following incorporation of the inhibitor into the nascent DNA. However, a significant decrease in the excision efficiency of EFdA-MP from the 3' primer terminus appears to be the primary cause of increased susceptibility to the inhibitor. Notably, the effects of the mutation are DNA-sequence dependent. CONCLUSION: We have elucidated the mechanism of K65R HIV hypersusceptibility to EFdA. Our findings highlight the potential of EFdA to improve combination strategies against TDF-resistant HIV-1 strains.


Assuntos
Adenina/análogos & derivados , Fármacos Anti-HIV/farmacologia , Desoxiadenosinas/farmacologia , Farmacorresistência Viral , HIV-1/efeitos dos fármacos , Organofosfonatos/farmacologia , Adenina/farmacologia , Linhagem Celular , Transcriptase Reversa do HIV/antagonistas & inibidores , Transcriptase Reversa do HIV/genética , Humanos , Testes de Sensibilidade Microbiana , Proteínas Mutantes/antagonistas & inibidores , Proteínas Mutantes/genética , Mutação de Sentido Incorreto , Tenofovir
7.
Plant J ; 62(5): 852-64, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20230508

RESUMO

A soybean homolog of the tomato FW2.2 gene, here named GmFWL1 (Glycine max FW2.2-like 1), was found to respond strongly to inoculation with the nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum. In tomato, the FW2.2 gene is hypothesized to control 30% of the variance in fruit weight by negatively regulating cell division. In the present study, the induction of GmFWL1 expression in root hair cells and nodules in response to B. japonicum inoculation was documented using quantitative RT-PCR and transcriptional fusions to both beta-glucuronidase (GUS) and green fluorescent protein (GFP). RNAi-mediated silencing of GmFWL1 expression resulted in a significant reduction in nodule number, with a concomitant reduction in nuclear size and changes in chromatin structure. The reduction in nuclear size is probably due to a change in DNA heterochromatinization, as the ploidy level of wild-type and RNAi-silenced nodule cells was similar. GmFWL1 was localized to the plasma membrane. The data suggest that GmFWL1 probably acts indirectly, perhaps through a cellular cascade, to affect chromatin structure/nuclei architecture. As previously proposed in tomato, this function may be a result of effects on plant cell division.


Assuntos
Glycine max/genética , Proteínas de Plantas/metabolismo , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Bradyrhizobium/fisiologia , Clonagem Molecular , Genes de Plantas , Heterocromatina/metabolismo , Família Multigênica , Filogenia , Proteínas de Plantas/genética , Interferência de RNA , RNA de Plantas/genética , Alinhamento de Sequência , Glycine max/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA